If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2.5x^2+4x=0
a = 2.5; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·2.5·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*2.5}=\frac{-8}{5} =-1+3/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*2.5}=\frac{0}{5} =0 $
| -3z=-4z+9 | | 1/8x+6=34 | | 5/3x+1/3x=222/3+6/3x | | G(x)=32/5x+55 | | 5/x=40/6= | | 42/g=6 | | 6(9x−10)+2(18−3x)=−8 | | -12+4m=-2-6(-4+m) | | 3^2-a=30 | | 9-8b=2 | | 0.5x-3=7.5 | | 7x-18+x=6 | | 6h-9=-9 | | 6+3b=14 | | 14d+20=20 | | 57p-10=30 | | 6+b/4=8 | | 6x-10/3=4x+8/7 | | 4-6a=2 | | 4m+-19=-15 | | 12g−9g=18 | | -5/8x=-20 | | 16s−10s=12 | | -3+10y=-82 | | 6s+-5s-11s-13=-11 | | 12(2x-4)+3(2x+8=66 | | H(x)=x+1/x^2-3x-4 | | 9n+45=12n-51 | | 13v+7v=20 | | 5(x=12)=11x-12 | | 7w+w+-18=14 | | 6+4k=-5k+15 |